Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT AND CARACTERIZATION OF BALLISTIC LAMINATED COMPOSITES
Autor: MARCEL PASSOS ZYLBERBERG
Colaborador(es): JOSE ROBERTO MORAES D ALMEIDA - Orientador
Catalogação: 09/JUN/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48531&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48531&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48531
Resumo:
Life threats, mainly from firearms, incentive research into new materials for manufacturing personal ballistic protection. Polymer composites reinforced with ultra high molecular weight polyethylene fiber have revolutionized this field over the last 15 years and have been extensively studied, especially for their exceptional mechanical properties and low density, to develop materials with high specific energy absorption capacity. In disagreement, the production of these composites is dominated by few companies in the world, and their availability is relatively limited, besides the fact that ballistic plates are controlled materials and restricted manufacturing domain, which made it difficult to obtain information. In this sense, the present research aims to design, manufacture and characterize six models of ballistic plates for protection against firing of rifle ammunition, using different types of composites (prepregs) with the addition of a titanium alloy layer. The characterization included FTIR at CBPF, TGA and DSC tests at PUC-Rio, fiber tensile strength, SEM, and metallography at CTEx. The plate performance analysis was performed at CAEx and included an ultra high speed camera, ballistic testing equipment and 3D laser scanning equipment. Test results were measured by firing speed and depth of the back face deformation of 16 plates. It was possible to conclude that the prototyping keeping the thickness or areal density values of the solution similar to control plates only in prepreg was efficient. The use of Ti-6Al-4V alloy plate with thickness of only 1mm by replacing up to 30 percent of prepreg material. In the border situation, it was possible to obtain plates that withstood the impact of rifle ammunition at about 95 percent of the speed specified in the standard, within the back face deformation tolerance.
Descrição: Arquivo:   
COMPLETE PDF