Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SCANNING SUSCEPTOMETER USING HALL EFFECT SENSORS TO DETECT DEFECTS IN STEEL SHEETS
Autor: ELOI BENICIO DE MELO JUNIOR
Colaborador(es): JEFFERSON FERRAZ DAMASCENO FELIX ARAUJO - Orientador
Catalogação: 08/JUN/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48484&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48484&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48484
Resumo:
Magnetic scanning instruments in structures, components, and materials have been the object of scientific research and are potential prototypes to be used in the industry, especially in non-destructive inspection to identify defects in metal structures subject to extreme conditions, such as high temperatures, pressure, and high tension. These conditions may lead to the failure of these structures, affecting their operation and resulting in losses and possible accidents. In this sense, we developed an instrument for scanning the magnetic response in defective steel plates using two measurement systems. In the first system, we used commercial equipment: Gaussmeter (F.W.BELL, model 9950), with three Hall-effect sensors perpendicular to each other, and in the second one, a gradiometer, composed of two Hall-effect sensors (Melexis, model 90215), developed at the Instrumentation Laboratory of the Physics Department of the PUC-Rio. For scanning both measurement systems, two linear actuators (Zaber, model T-LLS260C) were used. The instrument allows us to identify defects caused by electrical discharge machining on SAE 1020 steel plates. The second measurement system proved to be more efficient in detecting defects with diameters in the order of 0.90 mm and 10 μm in depth. A filter system was also built on a printed circuit board to attenuate noise. The signal-noise analysis showed that the circuit was effective and made possible a better identification of the defects. To reinforce the application of this instrument in scientific research and industry, a routine in MATLAB was developed to estimate the depth of the defects, resulting in an error of 3.54 per cent.
Descrição: Arquivo:   
COMPLETE PDF