Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: INFRARED PHOTODETECTORS BASED ON ASYMMETRIC SUPERLATTICES WITH LEAKY STATES IN THE CONTINUUM
Autor: PEDRO HENRIQUE PEREIRA
Colaborador(es): PATRICIA LUSTOZA DE SOUZA - Orientador
GERMANO MAIOLI PENELLO - Coorientador
Catalogação: 12/MAI/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48004&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48004&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48004
Resumo:
In this thesis, I present a theoretical and experimental investigation of the electro-optical properties of a photodetector based on an InGaAs/InAlAs asymmetric superlattice with a structural defect. This heterostructure has two important characteristics: partially localized states in the continuum, called by leaky electronic states, and a virtual increase in conduction band offset. Due to the asymmetry of the superlattice, the wavefunction of the leaky electronic state is located in one direction and extended in another one. As a result of these features, the photodetector presents a dual-mode operation, photoconductive and photovoltaic modes, and room temperature operating. The photovoltaic mode has reached due to the preferential direction for the flow of excited electrons in the leaky electronic state in the continuum. The high operating temperature occurs because of the decrease in thermal dark current due to the virtual increase of band offset. In photovoltaic mode, the photocurrent spectrum has two narrow energy peaks at 300 meV and around 440 meV, which are related to optical transitions from the ground state to the first and the second leaky electronic states, respectively. For photoconductive mode, the line width of the photocurrent spectrum is strongly dependent on the direction of the applied voltage bias. For the positive bias, the photocurrent spectrum has a peak at 300 meV and a power shoulder around 260 meV. For the negative bias, the photocurrent spectrum shows broadband with two peaks at 300 meV and 260 meV. This behavior is related to the population of the mini band states as a function of the applied bias direction. The figure of merits of the photodetector, in both operation modes, present results similar to the best photodetectors found in the literature.
Descrição: Arquivo:   
COMPLETE PDF