Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT AND VALIDATION OF A LOW-COST DATA ACQUISITION SYSTEM FOR VERY SHORT-TERM PHOTOVOLTAIC POWER FORECASTING
Autor: GUILHERME FONSECA BASSOUS
Colaborador(es): RODRIGO FLORA CALILI - Orientador
CARLOS ROBERTO HALL BARBOSA - Coorientador
Catalogação: 08/MAI/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47953&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47953&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.47953
Resumo:
The rising adoption of renewable energy sources means we must turn our eyes to limitations in traditional energy systems. Intermittency, if left unaddressed, may lead to several power quality and energy efficiency issues. The objective of this work is to develop a working tool to support PV energy forecast models for real-time operation applications. The current paradigm of intra-hour solar power forecasting is to use image-based approaches to predict the state of cloud composition for short time-horizons. For a more accurate model, it is also necessary to use deterministic components such as temperature and angle of incidence on the panels in addition to the stochastic effect of clouds. Since the objective of intra-minute forecasting is to address high-frequency intermittency, data must provide information on and surrounding these events. For that purpose, acquisition by exception was chosen as the guiding principle. The system performs power measurements at 1 Hz frequency and whenever it detects variations over a certain threshold, it saves the data 10 s before and 4 s after the detection point. After post-processing, this data was fed into a multilayer perceptron neural network to determine its relevance to the forecasting problem. With a thorough selection of attributes and network structures, the results show very low error with a normalized good fitting with R2 greater than 0.93 for both input variables tested with a time horizon of 60 s. In conclusion, the data provided by the acquisition system yielded relevant information for forecasts up to 60 s ahead.
Descrição: Arquivo:   
COMPLETE PDF