Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ADDITION OF DIVALENT CATIONS (ZN(2+), NI(2+)) TO ZRMGMO(3)O(12) AND THEIR EFFECTS ON PHYSICAL PROPERTIES
Autor: ALISON TATIANA MADRID SANI
Colaborador(es): BOJAN MARINKOVIC - Orientador
Catalogação: 13/ABR/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47415&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47415&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.47415
Resumo:
Although the vast majority of materials dilates when heated and contract when cooled, there is a class of materials that contracts or does not change their dimensions when heated, presenting a negative thermal expansion coefficient (NTE) or close to zero (ZTE), respectively. The possibility of reducing the coefficient of thermal expansion while increasing its physical properties has been the main driving force in the search for crystalline phases within the A(2)M(3)O(12) family and its subfamilies. In the present study, we propose to synthesize two new systems, ZrMg(1-x)Zn(x)Mo(3)O(12) (x = 0.1, 0.3, 0.35, 0.4) and ZrMg(1-x)Ni(x)Mo(3)O(12) (x = 0.05; 0.1, 0.15, 0.2), to try to reduce the coefficient of thermal expansion of the ZrMgMo(3)O(12) phase. The solubility limit of Zn(2+) and Ni(2+) in the ZrMgMo(3)O(12) system is in the range of 0.35 less than or equal to x less than or equal to 0.4 and 0.1 less than or equal to x less than or equal to 0.2, respectively. The lowest coefficient of thermal expansion (alfa l=2.82x10(-7)K (-1)) was obtained for the composition x = 0.1 in the ZrMg(1-x)Zn(x)Mo(3)O(12)system in the temperature range of 213 K to 298 K. In this system, the phase transition from monoclinic to orthorhombic was observed, occurring below the room temperature for all compositions from x = 0.1 to x = 0.4. This transition temperature increases as the Zn(2+) composition increases. Analyzes of thermogravimetry indicated that the phases of the two systems are not hygroscopic. Applying the Kubelka-Munk equation, and considering an indirect transition to ZrMg(1-x)Zn(x)Mo(3)O(12), it was concluded that there are no significant differences in the band gap energy of the analyzed phases. However, for an indirect transition to ZrMg1-xNixMo3O12 there is a decrease in energy of the band energy, as Ni2+ content increases in composition, in addition to the appearance of absorption in the visible spectrum due to d-d transition. Finally, the results of this study showed that it is possible to obtain a ceramic material, within the systems studied, that presents a thermal expansion behavior close to zero.
Descrição: Arquivo:   
COMPLETE PDF