Título: | RARE EARTH OXIDES-BASED NANOPARTICLES FOR APPLICATION IN PHOTODYNAMIC CANCER THERAPY | ||||||||||||
Autor: |
BIANCA ALMEIDA DA SILVA |
||||||||||||
Colaborador(es): |
JIANG KAI - Orientador |
||||||||||||
Catalogação: | 07/ABR/2020 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47357&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47357&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.47357 | ||||||||||||
Resumo: | |||||||||||||
Herein, rare earth oxides-based nanoparticles were synthesized and
characterized for the use in photodynamic therapy. In this approach, a
photosensitizer material, when excited with ultraviolet-visible light, generates
reactive oxygen species, such singlet oxygen, which is an important cytotoxic agent
that destroys cancer cells. Therefore, our main objective is the synthesis of
scintillating nanoparticles, capable of converting X-ray radiation into UV-Vis light,
designed for further functionalization with the methylene blue photosensitizer and
use in cancer treatment. Thus, nanoparticles of gadolinium oxide doped with
europium and samarium ions were obtained by sol-gel synthesis. Hybrid
nanoparticles of silica with europium(III)-doped gadolinium oxide were also
obtained with different doping concentration through the impregnation method.
They were characterized with various physicochemical techniques and structural
determination involving following instrumentalities: scanning and transmission
electronic microscopies, infrared spectroscopy and powder X-ray diffraction,
confirming the formation of nanoparticles with crystallinity and morphological
properties suitable for applications in the biological system desired. In addition,
photoluminescence analyses were conducted, where was possible to record
excitation and emission spectra, confirming the compatibility of these materials
with the photosensitizer to be used. To ensure the clinical safety of these
nanoparticles, cytotoxicity studies were also carried out; results have shown that
these materials did not appear to be toxic in concentrations of 10-500 micrograms.mL(-1),
presenting high cellular viability. Moreover, the reactive oxygen species generation
assays are under investigation in the absence and presence of the photosensitizer.
In summary, it is believed that the nanoparticles obtained have a great potential for
application in photodynamic therapy as an alternative for cancer treatment.
|
|||||||||||||
|