Título: | AN EXPERIMENTAL APPROACH ON MINIMAL IMPLICATIONAL NATURAL DEDUCTION PROOFS COMPRESSION | ||||||||||||
Autor: |
JOSE FLAVIO CAVALCANTE BARROS JUNIOR |
||||||||||||
Colaborador(es): |
EDWARD HERMANN HAEUSLER - Orientador |
||||||||||||
Catalogação: | 26/MAR/2020 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47267&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47267&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.47267 | ||||||||||||
Resumo: | |||||||||||||
The size of formal proofs has some important theoretical implications
in computational complexity theory. The problem of determining if some
formula of Intuitionistic Propositional Logic and the purely implicational
fragment of Minimal Logic (M(contains)) is a tautology is PSPACE-Complete. Any
propositional logic with a natural deduction system that satisfies the sub-
formula principle is PSPACE. To know if any tautology in M(contains) admits
polynomially sized proof is related to whether NP = PSPACE. Proof
compression techniques reported in literature use two main approaches
to proof compressing: generating already compressed proofs; compressing
an already generated proof. Proposed by Gordeev and Haeusler (6), the
Horizontal Compression is a natural deduction proof compression technique
that uses directed graphs to represent proofs. Given a tautology proof in
M(contains), which may have an exponential size in relation to conclusion length,
the goal of Horizontal Compression is that the compressed proof has a
polynomially limited size in relation to conclusion length. Our work presents
the first implementation of Horizontal Compression, together with the first
results of the execution of the technique on proofs of M(contains) tautologies.
|
|||||||||||||
|