Título: | PROCESS OPTIMIZATION FOR THE PRODUCTION OF FERRIC SULFATE COAGULANT BY THE OXIDATION OF FERROUS SULFATE WITH HYDROGEN PEROXIDE | ||||||||||||
Autor: |
VERONICA BARBOSA MAZZA |
||||||||||||
Colaborador(es): |
LUIZ ALBERTO CESAR TEIXEIRA - Orientador ANA ROSA FONSECA DE AGUIAR MARTINS - Coorientador |
||||||||||||
Catalogação: | 25/MAR/2020 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47247&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47247&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.47247 | ||||||||||||
Resumo: | |||||||||||||
It is known that the coagulant ferric sulfate can be obtained by the oxidation reaction of ferrous sulfate with hydrogen peroxide in acidic medium. However, the known method of obtaining this coagulant on an industrial scale using hydrogen peroxide as an oxidizing agent do not provide economically attractive conditions compared to other processes. This potent oxidizing agent undergoes strong influence
of the temperature and the presence of iron ions in its process of self-decomposition in water and oxygen. It can be considered that the conditions of the reaction medium in the step of adding the oxidizing agent are the determining factors for the production of the ferric coagulant with the greatest use of the added hydrogen peroxide. The present work had the objective of investigating the necessary conditions for the
production of the ferric coagulant using the hydrogen peroxide as an economically competitive process. The research was based on the techniques of factorial design and process optimization. The mathematical modeling of the process allowed the definition of the magnitude of the parameters to be used, optimizing the process and specifying the desired characteristics of the final product. The independent variables
studied in the mathematical modeling were: temperature (7,5 – 27,5 celsius degrees), amount of
hydrogen peroxide (100-300 percent) relative to its stoichiometric amount, and dilution of the medium using water (100-300 percent) relative to its stoichiometric amount. The stoichiometric quantities of the reactants were determined in order to reach the specifications of a commercial ferric coagulant. The model developed was on Conversion of Fe2(+) to Fe3(+) (percent) and evaluated through Analysis of Variance (ANOVA). The optimum conditions chosen for the optimum were: temperature equal to 17,5 Celsius degrees, 150 percent of the stoichiometric amount of hydrogen peroxide and 200 percent of the
stoichiometric amount of water. The optimization of the response surfaces indicated a conversion of 96.17 percent Fe2(+) to Fe3(+), resulting in a coagulant within the characteristics specified by the technical standard. The obtained mathematical model predicted a conversion of 96.13 percent Fe2(+) to Fe3(+), resulting in a percentage error of 0,043 percent between the predicted results by the mathematical model and the experimental results. The analysis of the response surfaces and the amount of residual hydrogen peroxide in solution indicated that the control of the process at low temperatures contributes to the better utilization of the hydrogen peroxide in the conversion of Fe2(+) into Fe3(+), due to the deceleration of the self-induced decomposition by the factor temperature. The analysis of the reduction potential along the conversion profile function showed that conversions above 90 percent of Fe2(+)into Fe3(+) presented a corresponding redox potential (Eh) above 0,70 Volts, indicating the possibility of using this parameter for the control of conversion into industrial processes.
|
|||||||||||||
|