Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: ORGANIC ELECTROLUMINESCENT DEVICES BASED ON LANTHANIDE COMPLEXES
Autor: REYNALDO GREGORINO REYES GUERRERO
Colaborador(es): MARCO CREMONA - Orientador
Catalogação: 12/MAR/2004 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4641&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4641&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.4641
Resumo:
In this work, electroluminescent organic devices (OLEDs), where the emitting layers are lanthanide complexes, have been studied. The OLEDs structure was an heterojunction with three organic materials, where the 1-(3-methylphenil)- 1,2,3,4 tetrahydroquinoline-6-carboxyaldehyde-1,1- diphenylhydrazone (MTCD) is used as the hole transporting layer, the tris 8-hydroxyquinoline aluminum (Alq3) as the electron transporting layer, while the lanthanide complexes [TR(TTA)3(TPPO)2], where TR3+ are Sm, Eu or Gd, were used as the emitting layers. Also, the [Eu(btfa)3bipy] and [Tb(DPM)3] complexes was analyzed for a possible emitting layer employment. The organic layers were successively deposited onto glass substrate coated with indium tin oxide film (ITO) with an Al electrode cap layer. Spectral analysis shown that the emitted light correspond to electronic transitions arising from the of Sm3+ and Eu3+ ions, while for the gadolinium complex it is found that the emission corresponds to the molecular electrophosphorescence of the TTA ligand. Using a [SmxEuy (TTA)3(TPPO)2] blend complex, it was shown that is possible to obtain a voltage-controlled emission color OLED. For the majority of the fabricated devices the electrical characterization shown that the j-V curve can be described by the j infinit Vm+1 relation, that correspond to a trapped- charge-limited (TCL) conduction model. Optical absorption measurement were performed in order to calculate the optical band gap and through the fluorescence spectroscopy the effect of ultraviolet irradiation in the degradation of the organic materials have been also studied. Finally, in order to increase the electron injection in the fabricated devices, amorphous carbon films (a-C:N and a-SiC:N), were deposited by sputtering onto organic layer, just before the Al electrode. It was found that the presence of the a-C:N layer increases the current density. This fact can be explained by using the rigid band model that shows a barrier height reduction for the electron injection when the a-C:N layer is introduced between the Alq3 and the Al. Furthermore, it was also shown that these particular amorphous carbon films present themselves the electroluminescence phenomena at room temperature and with low voltages, which opens new possibilities for their applications in novel optoelectronic devices.
Descrição: Arquivo:   
PDF      
CHAPTER 1 PDF      
CHAPTER 2 PDF      
CHAPTER 3 PDF      
CHAPTER 4 PDF      
CHAPTER 5 PDF      
CHAPTER 6 PDF      
CHAPTER 7 PDF      
CHAPTER 8 PDF      
PDF