Título: | EXPERIMENTAL AND NUMERICAL STUDY OF REFRACTORY COMPOSITES BEHAVIOR AT DIFFERENT TEMPERATURES | ||||||||||||
Autor: |
WALTER GABRIEL BAREIRO |
||||||||||||
Colaborador(es): |
ELISA DOMINGUEZ SOTELINO - Orientador FLAVIO DE ANDRADE SILVA - Coorientador |
||||||||||||
Catalogação: | 09/OUT/2019 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=45730&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=45730&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.45730 | ||||||||||||
Resumo: | |||||||||||||
In this study different concretes based on aluminous cement were developed and characterized in terms of their thermomechanical behavior over a wide temperature range (25-1200 Celsius degrees). First, three refractories with different alumina contents (51, 71 and 90wt. percent) were studied to characterize their chemical and mechanical behavior at different temperatures. For this, several types of experimental tests, after heating and cooling, were carried out: microstructural, chemical, uniaxial compression tests, direct tensile tests and three-point bending test. With these results, a new type of coating was developed through numerical simulations combining the three refractories in layers. The most efficient solution in terms of thermal gradient was the combination that used the refractory with 90 percent of alumina as the inner layer and the refractories of 71 percent and 51 percent as the middle and outer layers, respectively. A refractory composite material reinforced with stainless steel fibers was developed. For this, the refractory concrete with 51 percent of alumina was selected, since it presented the best mechanical behavior at the analyzed temperatures (up to 1200 Celsius degrees). Three types of fibers were considered: straight, wavy and knurled. In addition to performing the same types of tests for the refractory matrix, cyclic, fiber pullout and structural tests (round panels) were also performed. The tests provided the parameters for the Damage Plasticity constitutive model available in the finite element software ABAQUS. The constitutive model was validated through thermomechanical simulations of the round panel test. It was concluded that the thermo-mechanical behavior of the refractory composites with the addition of stainless steel fibers was significantly better than the non-reinforced refractory. The composite with the knurled fiber was the one that had the best performance due to the strong bond of the fiber to the matrix. The experimental results and numerical simulations showed that the reinforcement effect benefits the pre-peak and post-peak mechanical behavior of the refractory composites. The influence of the strain-hardening observed in the initial phase of the curves and the softening post-peak indicated the importance of these parameters for structural projects. The damage of the refractory composite was analyzed through digital image correlation to study the crack propagation at various temperatures. It has been observed that with the increase in temperature the propagation of the crack becomes slower and the opening of the crack becomes less pronounced. It is therefore concluded that such materials are suitable for use in applications involving high temperatures.
|
|||||||||||||
|