Título: | ALGORITHMS FOR ASSISTED DIAGNOSIS OF SOLITARY LUNG NODULES IN COMPUTERIZED TOMOGRAPHY IMAGES | ||||||||||||||||||||||||||||||||||||
Autor: |
ARISTOFANES CORREA SILVA |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
MARCELO GATTASS - Orientador PAULO CEZAR PINTO CARVALHO - Coorientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 19/FEV/2004 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4516&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4516&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.4516 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
The present work seeks to develop a computational tool to
suggest about the malignancy or benignity of Solitary Lung
Nodules by the analysis of texture and geometry measures
obtained from computadorized tomography images. Four groups
of methods are proposed with the purpose of suggesting the
diagnosis for such nodule. The groups of methods are
divided according to their common characteristics. Group I
includes methods based on texture adapted for 3D, such as
the histogram, the Spatial Gray Level Dependence Method,
the Gray Level Difference Method and Gray Level Run Length
Matrices. Group II also deals with the texture of nodules,
but uses four statistical functions denominated
semivariogram, semimadogram, covariogram and correlogram.
Group III describes measures based only on the geometry of
the nodule, such as convexity, sphericity, and measures
based on the curvature. Finally, Group IV analyzes the Gini
coeficient and nodule skeleton methods, which take into
account both the nodule s geometry and its texture.
A sample with 36 nodules, 29 benign and 7 malignant, was
analyzed and the preliminary results of this approach are
very promising in characterizing lung nodules. Most groups
of proposed methods have the area under the ROC curve value
above 0.800, using Fisher s Linear Discriminant Analysis
and Multilayer Perceptron Neural Networks. This means that
the proposed methods have great potential in the
discrimination and classification of Solitary Lung Nodules.
|
|||||||||||||||||||||||||||||||||||||
|