Título: | PATCH LOAD RESISTANCE USING COMPUTATIONAL INTELLIGENCE TECHNIQUES | |||||||
Autor: |
ELAINE TOSCANO FONSECA |
|||||||
Colaborador(es): |
SEBASTIAO ARTHUR LOPES DE ANDRADE - Orientador MARLEY MARIA BERNARDES REBUZZI VELLASCO - Coorientador PEDRO COLMAR GONCALVES DA SILVA VELLASCO - Coorientador |
|||||||
Catalogação: | 15/JAN/2004 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4392&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4392&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.4392 | |||||||
Resumo: | ||||||||
Concentrated loads on steel beams are frequently found in
engineering practice. In situations where the load
application point is fixed, transversal web stiffeners can
be used to provide an adequate resistance, but for
economic reasons should be avoided whenever possible. For
moving loads, the knowledge of the unstiffened web
resistance becomes imperative. Many theories were
developed for a better understanding of the problem,
however, a 40% error is still present in the current
design formulas. A more accurate design formula for this
structural problem is very difficult to be obtained, due
to the influence of several interdependent parameters and
to the insufficient number of experiments found in
literature. On the other hand, the structural collapse can
be associated to: web yielding, web buckling, web
crippling or by their combined influence. Despite this
fact, no investigations were found in literature to access
their partial of global influence on the beam patch load
resistance Neural networks were inspired in the brain
structure in order to present human characteristics such
as: learning from experience; and generalization of new
data from a current set of standards. Preliminary studies
used the neural networks potential to forecast the
ultimate load of steel beams subjected to concentrated
loads. The main aim of Fuzzy Logic is to model the complex
approximated way of inference, trying to represent the
human ability of making sensible decisions when facing
uncertainties. Thus, fuzzy logic is an artificial
intelligence technique capable of generating a mechanism
for treating inaccurate and incomplete information such
as: slenderness, flexibility and stiffness, still being
capable of establishing gradual boundaries among the
physical phenomena involved. Genetic algorithms are
inspired on the Darwins principle of the species
evolution and genetics. They are probabilistic algorithms
that generate a mechanism of parallel and adaptive best
fit survival principle and their reproduction and have
been long used in several optimisation problems. This work
extends the research developed in a previous MSc. program
(Fonseca, 1999) and intends to evaluate and investigate
the structural behaviour of steel beams subjected to
concentrated loads, identifying the influence of several
related parameters. This will be achieved by the use of a
neuro-fuzzy system, able to model the intrinsic
relationships between the related parameters. The proposed
system aim is to relate the physical and geometrical
variables that govern the ultimate load with its
associated physical behaviour (web yielding, web crippling
and web buckling), being capable of establishing gradual
boundaries among the physical phenomena involved. This
investigation was focused on the development of a neuro
fuzzy system. The proposed neuro fuzzy system was trained
with data where the collapse mechanism were properly
identified validating its results. This investigation also
presents a study of patch load design formulae optimization
based on genetic algorithm principles. The obtained
results may help the future development of a more accurate
design formula, that could be incorporated in steel
structures design codes, allowing a safer and economical
design.
|
||||||||