Título: | A TOPOLOGICAL APPROACH FOR MESH SIMPLIFICATION | |||||||
Autor: |
ANTONIO WILSON VIEIRA |
|||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador GEOVAN TAVARES DOS SANTOS - Coorientador |
|||||||
Catalogação: | 17/DEZ/2003 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4314&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4314&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.4314 | |||||||
Resumo: | ||||||||
Many applications, in mathematics, computer graphics,
medical imaging, geophysics and others, have used the
representation of solids by their boundary surface, usually
polygonal meshes. Those meshes can represent, with high
precision, the geometric properties of the boundary surface
of solid and also store important topological surface
properties as genus, boundary and connected components.
Because of the high complexity of such meshes, they are
usually processed by the computers using specific data
structures. These structures store, beyond the mesh
geometry, information about incidence and adjacency
relations among the mesh elements. They require
computational resources for storage and processing
according to the mesh complexity. Even with the development
of the computational resources available for handling such
structures, very large meshes with millions of elements are
hard to store, to process and to exchange through the web.
Many recent researches are looking for mesh simplification
process that allows to represent the same surface with
fewer elements and compression process to encode it in
compact ways for transmition and storage. In this work, we
develop topological operators, in a concise data structure,
for simplifying meshes by the decimation of its cells. One
of our goals, with these operators, is to obtain a mesh
with a low complexity that preserves the topological
properties from the original surface without loosing the
control of the geometric proprieties as volume, area and
visual aspect.
|
||||||||