Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE CLOCKWORK APPROACH TO NATURAL FERMION HIERARCHIES
Autor: FERNANDO ABREU ROCHA DE SOUZA
Colaborador(es): GERO ARTHUR H T F VON GERSDORFF - Orientador
Catalogação: 02/AGO/2019 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=42765&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=42765&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.42765
Resumo:
The Standard Model of particle physics is one of the most well established theories in the field of physics and is able to make predictions correctly measured and verified up to twelve significant figures. However, the theory leaves some unanswered questions that have been bothering physicist for many years. One of those questions is the hierarchical structure of the fermion sector, where Yukawa matrices have eigenvalues that differ from each other by several orders of magnitude. Another aspect concerns the CKM matrix, which dictates the mixing between fermions of distinct flavours: why is this matrix almost diagonal, and why are the mixing angles so small? Why is the electron so much lighter than its cousins from different generations? The same question could be made for the quarks and the Standard Model would not be able to answer neither of these. In this work, an explanation is proposed by employing a novel model, called Clockwork Mechanism, which assumes the existence of new heavy fermion particles, named Clockwork Gears, which are able to naturally generate exponentially suppressed couplings out of order-one Yukawas, after spontaneously symmetry breaking occurs. In addition, simulations were run in order to optimize the free parameters of the model, as well as to confirm its efficiency at fitting with experimental data. Lastly, a few processes involving Flavour Changing Neutral Currents were considered in the effective field theory regime as a means to stipulate a typical mass scale for these new particles.
Descrição: Arquivo:   
COMPLETE PDF