Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: EFFECT OF THE HIGH FREQUENCY HOT INDUCTION BENDING PARAMETERS AND POST TEMPERING HEAT TREATMENT ON THE STRENGTHENING MECHANISM OF AN API 5L X80 PIPE STEEL
Autor: RAFAEL DE ARAUJO SILVA
Colaborador(es): IVANI DE SOUZA BOTT - Orientador
Catalogação: 13/MAR/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37334&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37334&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37334
Resumo:
The correlation between high frequency hot induction bending parameters with microstructure and mechanical properties is very important in order to keep the bent pipe within the API grade, in according with the API Specification 5L after the induction bending. The measured values of yield strength are a function of hardening mechanisms in both the tangent end and the bent section. The changes imposed by the thermal cycles of hot bending and tempering can modify the contribution of the strengthening mechanisms. This work aims to evaluate the changes of mechanical properties in the tangent end and the bent section from the point of view of the strengthening mechanisms such as phase transformation, dislocation density and precipitation. The results of the microstructural evaluations of the tangent section have shown that the hardening by grain refinement, precipitation in the austenite and the high dislocation density were responsible for high yield strength. The restrict range of cooling rate originated from the hot bending temperature was the most significant parameter on the microstructure, precipitation, dislocation density and hardening of the layers of the bent section. However, in the bend sections the restriction of precipitation of Vanadium significantly decreased the yield strength level. After hot bending the contributions of the strengthening mechanisms such as precipitation, phase transformation and dislocation hardening did not produce the desired minimum value of 552 MPa for the yield strength. Only after the tempering heat treatment at 600 Celsius degrees it was possible to obtain an increase in the yield strength.
Descrição: Arquivo:   
COVER, DEDICATION, THANKS, RESUMO, ABSTRACT, SUMARY, LISTS, EPIGRAPH PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES PDF