Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SIZING OF A NATURAL GAS STORAGE UNDER DEMAND AND PRICE UNCERTAINTY
Autor: LILIAN ALVES MARTINS
Colaborador(es): ALEXANDRE STREET DE AGUIAR - Orientador
Catalogação: 26/FEV/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37187&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37187&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37187
Resumo:
In Brazil, natural gas demand has stochastic behavior since gas-fired power plants operate in conjunction with the hydroelectric system. Natural gas supply to these plants relies upon Liquefied Natural Gas (LNG), imported through cryogenic ships. LNG acquisitions must occur before the natural gas demand is known because of the time of displacement of the ships. This lack of synchronism stimulates the use of harmonizing mechanisms between the electric sector and the natural gas sector. In this context, natural gas storage could be used to introduce flexibility into the system and increase synergy between natural gas supply and demand dynamics. However, the economic performance of the storage will depend on actual gas prices and demand behavior during the period of analysis. This study aims to construct a linear programming model to determine the size of a natural gas storage under demand and LNG price uncertainty. The model is a hybrid of a stochastic optimization algorithm – developed to consider gas demand uncertainty – and a robust optimization algorithm – built to take into account LNG price uncertainty. A convex combination between Conditional Value-at-Risk (CVaR) and expected value is also used to indicate the supplier risk profile as well as a security criterion, introduced to represent a deficit-averse supply process. At the end, a hypothetic case is presented to evaluate the implementation of a natural gas storage. The case presented uses public data from the Brazilian electric and gas natural sectors and considers 2.000 demand scenarios and various levels of robustness to LNG price variation.
Descrição: Arquivo:   
COMPLETE PDF