Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: IDENTIFICATION AND SOLUTION OF HOT ROLLING CRACKING IN STRUCTURAL STEELS PROCESSED BY CONTINUOUS CASTING
Autor: CARLOS AUGUSTO RUPPENTHAL MILANI
Colaborador(es): MARCOS VENICIUS SOARES PEREIRA - Orientador
Catalogação: 18/FEV/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36911&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36911&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.36911
Resumo:
The advent and consolidation of the continuous casting process, currently dominant in the Steel Industry, raised the increasing investigation and analyses efforts on the phenomena related to the high-temperature behavior of the steels. Unlike the conventional ingot casting process, the continuous casting is a dynamic process in which occurs the mold oscillation while the strand under solidification is continuously withdrawn and submitted to a secondary cooling operation. In Brazil, it can be found an industrial park of companies dedicated to the hot rolling of semis supplied by third parties as steel slabs, which ones are flame cut in the form of square billets for rolling. The production mix of these companies encompasses structural steels such as flat bars, round bars, angles and even special profiles for the machines and automotive industries. A catastrophic series of quality events related to cracking emerged from the rolling of SAE 1020 billets made from continuously cast slabs. These cracks, perhaps pre-existing or latent in the inner parts of the slabs could be exacerbated by thermal affected zones during the flame-cut operations. The propose solution to overcoming this contingency was the creation of a replacement steel grade with lower carbon content and higher alloy content aiming to preserve the mechanical properties of the as rolled material. Lower carbon contents does not only contributes to the minimization of the effects arising from the peritetic transformations as also act in favor on the consequences coming from thermal affected zones. This proposition was well successful and the chemical composition of this replacement steel called pseudo- 1020 since then became a rolling standard. Samples of the rolled SAE 1020 steel with cracks occurrences and of the replacement steel were taken and transformed in specimens for tensile strengths, hardness and impact tests.This paper aims to present all related phenomena to the occurrence of inner and superficial cracks in continuously cast steels, in special the ones submitted to peritetic transformations, and the premises that support the creation of a replacement steel and the related results.
Descrição: Arquivo:   
COMPLETE PDF