Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: JANUS NANOPARTICLES FORMED BY GOLD AND TITANIUM DIOXIDE AS PHOTOCATALYST FOR HYDROGEN PRODUCTION FROM WATER
Autor: LAIS HELENA MOREIRA DA COSTA
Colaborador(es): ANA MARIA PERCEBOM SETTE DA SILVA - Orientador
SONIA LETICHEVSKY - Coorientador
Catalogação: 23/JAN/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36253&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36253&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.36253
Resumo:
Particles possessing two sides with different chemical properties are named Janus, as a reference to the double-faced god of Roman mythology. The combination of two different properties in the same system has been showing interesting for numerous applications. In this work, amphiphilic gold nanoparticles were synthesized by selectively coating the metallic nucleus hemispheres with two polymers, one hydrophobic and one hydrophilic. Then, a preferential growth of titanium dioxide over the hydrophilic face was performed. The results obtained by structural and physicochemical characterization confirmed the formation of gold nanoparticles with one hemisphere coated by titanium dioxide with low crystallinity and high porosity, proving the Janus character. The obtained Janus nanoparticles were tested as photocatalysts for hydrogen production from water. Results showed the superior activity in comparison to nanoparticles comprised only by titania. Thus, this study describes a new strategy to obtain Janus nanoparticles, which can be used for different applications and also demonstrates their importance in the fields of catalysis and production of hydrogen gas as renewable fuel.
Descrição: Arquivo:   
COMPLETE PDF