Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FLOTATION OF THE HEMATITE-QUARTZ SYSTEM USING THE SOLUBLE BIOSURFACTANT PRODUCED BY RHODOCOCCUS ERYTHROPOLIS
Autor: CARLOS ALBERTO CASTANEDA OLIVERA
Colaborador(es): MAURICIO LEONARDO TOREM - Orientador
ANTONIO GUTIERREZ MERMA - Coorientador
Catalogação: 11/JAN/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36068&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36068&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.36068
Resumo:
The search for new reagents of low toxicity and high biodegradability has been stimulated. As a result, several researches have been developing bioreagents, among them biosurfactants. Biosurfactants are molecules of microbial origin that have surface action. These molecules, with amphiphilic properties, are produced biologically and have application in various industrial sectors. Therefore, this research aimed to study the flotation of the hematite- quartz system using the soluble biosurfactant produced by Rhodococcus erythropolis as a collector bioreagent. The biosurfactant (BS) was characterized by chemical analysis to determine the percentage of proteins, carbohydrates and lipids and its physicochemical properties were determined by surface tension and critical micellar concentration (CMC). The minerals and their interaction with BS were characterized by measurements of zeta potential, contact angle measurements and infrared spectroscopy (FTIR) to determine their electrokinetic properties, hydrophobicity and functional groups, respectively. The adsorption results revealed higher adsorption of the biosurfactant onto the hematite surface than onto quartz surface and this was confirmed by FTIR analysis and microflotation tests. The results of hematite and quartz microflotation were higher at pH 3 and at the concentration of 100 mg/L, with recoveries around 99.88 percent and 31.05 percent, respectively, and they were analyzed statistically to obtain a polynomial function representative of microflotation. The microflotation tests of the hematite-quartz system showed that the biosurfactant is more selective with hematite than quartz. The kinetic study showed that the experimental data of hematite microflocation were adjusted to both the first order kinetic model and the kinetic model of non-integral order, while the experimental data of the quartz microflotation were adjusted to the kinetic model of non-integral order. Finally, the results of this work showed that the use of the soluble biosurfactant produced by Rhodococcus erythropolis as a collector reagent in the hematite-quartz system was feasible, demonstrating its great potential and showing quite promising for a future application in the mineral flotation industry.
Descrição: Arquivo:   
COMPLETE PDF