Título: | STUDY OF THE ALIGNMENT DYNAMICS OF GOLD NANORODS UNDER THE INFLUENCE OF AN EXTERNAL ELECTRICAL FIELD | ||||||||||||
Autor: |
LEONARDO DE FARIAS ARAUJO |
||||||||||||
Colaborador(es): |
ISABEL CRISTINA DOS SANTOS CARVALHO - Orientador |
||||||||||||
Catalogação: | 09/JAN/2019 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36033&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36033&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36033 | ||||||||||||
Resumo: | |||||||||||||
Liquid crystals are widely used nowadays in displays and optical filters. However, the alignment of liquid crystals has a relatively slow switching response (of the order of milliseconds) due to the near-neighbor interaction. In contrast, the high electrical susceptibility of a single gold nanorod enables its alignment to an external electric field, presenting a significantly faster switching response than that of liquid crystals. The elongated form of the nanorods makes their absorption and scattering, caused by the Localized Surface Plasmon Resonance (LSPR) effect, to be highly dependent on their orientation relative to the light polarization. Therefore, gold nanorod suspensions have become a new paradigm in light control by electric field-induced alignment. In this work, a study of the alignment dynamics of nanorods is presented, by means of light transmission measurements by a component that allows the interaction of light with the suspension of nanorods while under the influence of an electric field of alignment. An alignment time of 1.5 microseconds was found, which is 3 orders of magnitude smaller than traditional liquid crystal alignment mechanism response time. A second experiment was carried out with a component with two pairs of transverse electrodes, in which it was possible to eliminate the slow relaxation of the system, thus demonstrating a digital optical switch with response of the order of 110 Newton second. Two theoretical models were proposed to describe the alignment dynamics of the nanorods and it was demonstrated that both models fit well the experimental data. An equivalence relation between the two models is presented.
|
|||||||||||||
|