Título: | HEAT INFLUENCE ON PHYSICAL AND MECHANICAL PROPERTIES OF DENDROCALAMUS GIGANTEUS BAMBOO | ||||||||||||
Autor: |
ARASH AZADEH |
||||||||||||
Colaborador(es): |
KHOSROW GHAVAMI - Orientador |
||||||||||||
Catalogação: | 14/NOV/2018 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35612&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35612&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.35612 | ||||||||||||
Resumo: | |||||||||||||
The principal objective of the present thesis is to investigate the effect of heat on physical and mechanical properties of Dendrocalamus giganteus bamboo. The chemical analysis carried out to study and compare chemical components among different species and the internal and external parts of Dendrocalamus giganteus bamboo. To establish the heating range and its intervals the thermogravimetric analysis test (TGA) carried out to study the degradation of different bamboo genera and species at macro, meso, and micro and nano level. Based on preliminary heat exposure tests and the results of TGA, the tests executed at initial temperatures 25 degrees Celsius considered as ambient temperature, 100 degrees Celsius, 125 degrees Celsius, 150 degrees Celsius, 175 degrees Celsius, 200 degrees Celsius and 225 degrees Celsius for 3 hours duration as short term, and 24 hours duration as long term heat exposure. Image processing carried out to investigate the meso structure of bamboo as a functionally graded material (FGM) and the fiber distribution alongside the radial direction from internal to external bamboo wall thickness. The volume fraction of fibers, matrix and voids for internal and external part of bamboo section established and used in the investigation of water absorption of each component of the bamboo. The scanning electronic microscope (SEM) and X-ray microtomography used to study the effects of different heat exposures on micro structure of fiber and matrix. The micro cracks initiate and propagate after 175 degrees Celsius. The influence of heat on hygroscopicity, water absorption, shrinkage and swelling of bamboo specimens in longitudinal, radial and tangential directions at different temperatures and time exposures investigated. The non-uniform shrinkage and water absorption of bamboo test specimens, measured in tangential direction at internal and external sides which permitted to establish the hygroscopic property of each component. The results show by heat exposure higher than 175 degrees Celsius the water absorption capacity reduces significantly. The tensile, compression, and shear resistance established along the fibers and only tensile experiments realized transversal to the fibers. In addition, the dynamic bending modulus of elasticity using impulse excitation technique applied to considered specimens. The result of mechanical tests shows a close relation between transversal tensile and shear strength with matrix strength. The tangible variation in mechanical properties occurred after heat exposure-time at 175 degrees Celsius-3h or 150 degrees Celsius-24h. The modulus of elasticity and compression strength are not reduced significantly and nearly remain the same for samples treated at 225 degrees Celsius-3h or 200 degrees Celsius-24h while for the tensile, shear and transversal tensile samples, the mechanical strength decreases about 70 percent to 90 percent at these temperature-time.
|
|||||||||||||
|