Título: | ANALYSIS OF CONTROL STRATEGIES FOR AUTONOMOUS SCALE MOTORCYCLES STABILIZATION AND TRAJECTORY TRACKING | ||||||||||||
Autor: |
MARILIA MAURELL ASSAD |
||||||||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador |
||||||||||||
Catalogação: | 13/AGO/2018 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34761&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34761&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.34761 | ||||||||||||
Resumo: | |||||||||||||
Autonomous vehicles are an interesting and recent problem, with its application in cars and motorcycles still in its early stages. In addition to the inherent difficulties in making a vehicle move independently, the autonomous motorcycle has to be able to remain stable at any speed and trajectory. The vehicle s stability can be achieved by different solutions and control techniques. The main objective of this work is to develop an autonomous electric motorcycle with low cost sensing system. For this, a dynamic model of two-wheeled vehicles is analyzed, capable of describing the dynamic behavior while being simple enough to allow the implementation of real-time linear control strategies. The controller has two different objectives: to maintain the motorcycle stable and to follow a desired trajectory, in an autonomous way. Experiments were carried out with the small scale motorcycle aiming to characterize its elements for the theoretical model; then the proposed control strategies were simulated with the adjusted dynamic model. Finally, the control algorithms are applied to the real system through an actuated platform capable of reproducing the dynamic behavior of single-track vehicles. At last, the present work is a tool for teaching engineering, involving multilevel students around a complex, but familiar, problem. The system allows for continuous learning with increasing difficulty, involving multibody dynamics, experimental results analysis via software simulations, electronics and filters present in the embedded instrumentation and many control techniques to keep the system stable in every desired path, culminating in the experimental application of cited concepts.
|
|||||||||||||
|