Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DETERMINISTIC ACOUSTIC SEISMIC INVERSION USING ARTIFICIAL NEURAL NETWORKS
Autor: MARCELO GOMES DE SOUZA
Colaborador(es): MARCELO GATTASS - Orientador
Catalogação: 02/AGO/2018 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34647&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34647&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.34647
Resumo:
Seismic inversion is the process of transforming Reflection Seismic data into quantitative values of petroleum rock properties. These values, in turn, can be correlated with other properties helping geoscientists to make a better interpretation that results in a good characterization of an oil reservoir.There are several traditional algorithms for Seismic Inversion. In this work we revise Color Inversion (Relative Impedance), Recursive Inversion, Bandwidth Inversion and Model-Based Inversion. All four of these algorithms are based on digital signal processing and optimization. The present work seeks to reproduce the results of these algorithms through a simple and efficient methodology based on Neural Networks and pseudo-impedance. This work presents an implementation of the algorithms proposed in the methodology and tests its validity in a public seismic data that has an inversion made by the traditional methods.
Descrição: Arquivo:   
COMPLETE PDF