Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: HYBRID INTELLIGENT SYSTEM FOR CLASSIFICATION OF NON-RESIDENTIAL ELECTRICITY CUSTOMERS PAYMENT PROFILES
Autor: NORMA ALICE DA SILVA CARVALHO
Colaborador(es): EUGENIO KAHN EPPRECHT - Orientador
REINALDO CASTRO SOUZA - Coorientador
Catalogação: 26/MAR/2018 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=33393&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=33393&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.33393
Resumo:
The objective of this research is to classify the non-residential electricity customer payment profiles regarding the knowledge stored in electricity distribution utilities databases. The motivation for development of the work from the need of electricity distribution by a support model to formulate strategies for tackling non-payment and late payment. The proposed methodology consists of a hybrid intelligent system constituted by intercommunicating modules that use knowledge stored in database to customer segmentation and then achieve the proposed objective. The system begins with the neural module, which allocates the consuming units in groups according to similarities (bill amount, consumption, measured demand/contracted demand, energy intensity and share of the electricity bill in the customer s income), in sequence, the Bayesian module establishes a score between 0 and 1 that allows to predict what payment profile of the units considering the generated groups and categorical attributes (business activity, tariff type, business size, mesoregion and company s legal form) that characterize these units. The results showed that the proposed system provides a reasonable success rate when classifying customer profiles and thus constitutes an important tool in the formulation of strategies for tackling non-payment and late payment. In conclusion, the hybrid system proposed here is a generalist one and could usefully be adapted and implemented in other markets.
Descrição: Arquivo:   
COMPLETE PDF