Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY
Autor: EVANDRO LUIZ MENDES
Colaborador(es): REINALDO CASTRO SOUZA - Orientador
Catalogação: 12/MAR/2003 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3336&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3336&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.3336
Resumo:
In this dissertation, a methodology is developed to forecast monthly demand of electric energy, considering the rationing scenery. The methodology is based on, taking the growth rate from the time series, identify and eliminate the effects of electric energy rationing, using Dynamic Linear Models. It is also analyzed intervention structures in the statistics models of Box & Jenkins and Holt & Winters. The models are compared according to some criterions, mainly forecast accuracy. At the end, we concluded that the methodology proposed is more efficient, due to the difficult to solve the problem using the statistics models with intervention. This solution is proposed as the best among them to create scenery during the energy rationing and after energy rationing, to be used by the national electric system agents.
Descrição: Arquivo:   
COMPLETE PDF