Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: STRAIN SENSITIVITY ANALISYS OF A SURFACE ACOUSTIC WAVE RESONATOR DEVICE
Autor: SAVIO WESLLEY OLIVEIRA FIGUEIREDO
Colaborador(es): ARTHUR MARTINS BARBOSA BRAGA - Orientador
SULLY MILENA MEJIA QUINTERO - Coorientador
Catalogação: 22/MAR/2018 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=33356&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=33356&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.33356
Resumo:
The conventional strain sensors, e.g., resistive and optical strain gages, established in the market, are deployed in different environments and structures, providing the flexibility of integration with different measurement systems. However, they require a local energy source to work or cables, limiting their use in some scenarios such as moving parts of machines. The SAW (Surface Acoustic Wave) devices can be used as piezoelectric strain sensors since they have sensitivity to strain, can operate passively by antennas and can be integrated to wireless monitoring systems. Its working principle is based on surface acoustic waves generated on piezolectric medium. The stress state of the medium changes the characteristics of these waves and induces changes in the operating frequency. The present work analyzed the strain sensitivity of SAW resonators made of ST-X cut quartz operating at a central frequency of 433,92 MHz, bonded with different adhesives, and tested their operation as passive wirelesss sensors. The methodology included non-destructive tensile testing at different temperature, and also finite elements simulations. The experimental results showed linear relation between the frequency change and the applied strain, agreeing with the literature. The wireless interrogations was successful, confirming the great potential of this technology. The numerical results, combined to a theoretical model, matched well the experiments, validating the model.
Descrição: Arquivo:   
COMPLETE PDF