Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ON THE HOMOLOGY OF THE SPACE OF CURVES IMMERSED IN THE SPHERE WITH CURVATURE CONSTRAINED TO A PRESCRIBED INTERVAL
Autor: ZHOU CONG
Colaborador(es): NICOLAU CORCAO SALDANHA - Orientador
Catalogação: 15/DEZ/2017 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32355&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32355&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.32355
Resumo:
While the topology of the space of all smooth immersed curves in 2-sphere that start and end at given points in given direction is well known, it is an open problem to understand the homotopy type of its subspaces consisting of the curves whose geodesic curvatures are constrained to a prescribed proper open interval. In this article we prove that, under certain circumstances for endpoints and end directions, these subspaces are not homotopically equivalent to the whole space. Moreover, we give an explicit construction of exotic generators for some homotopy and cohomology groups. It turns out that the dimensions of these generators depend on endpoints and end directions. A version of the h-principle is used to prove these results.
Descrição: Arquivo:   
COMPLETE PDF