Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DUAL BEAM MICROSCOPY AS A MODIFICATION AND CHARACTERIZATION TOOL OF ORGANIC SEMICONDUCTOR THIN FILMS AND FOR DEVICE FABRICATION
Autor: CRISTOL DE PAIVA GOUVEA
Colaborador(es): MARCO CREMONA - Orientador
Catalogação: 07/ABR/2017 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29615&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29615&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.29615
Resumo:
In this doctoral thesis we presented the dual-beam microscopy (SEM and FIB) technique as a modifier tool of physicochemical properties of the organic semiconductors, which it can be effective to change and control the charge carrier mobility into these semiconductor materials. In this case, organic devices and thin films, especially at thiophene base, were bombarded with different Ga ion doses in order to induce modification in the polymeric structure from the various interactions between the ion and the polymer. The bombarded thin films and devices properties were characterized by UV-Vis, Raman spectroscopy and CELIV techniques, which indicated the existence of two behavior regimes governed by the ion dose employed. Advanced electron microscopy techniques indicated the formation of a graphitic structure, around 50 nm from the surface bombardment, resulting of the interaction between the gallium ions and the polymer layer. The possibility to fabricate organic devices interspersed with graphitic layers can be exploited in order to construct more efficient architectures, using the high spatial resolution of the FIB technique.
Descrição: Arquivo:   
COMPLETE PDF