Título: | CONTROL OF A ROBOTIC HAND USING SURFACE ELECTROMYOGRAPHIC SIGNALS | ||||||||||||
Autor: |
CARLOS GERARDO PAUCAR MALQUI |
||||||||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador |
||||||||||||
Catalogação: | 07/MAR/2017 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29330&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29330&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.29330 | ||||||||||||
Resumo: | |||||||||||||
This thesis proposes the control of a robotic hand system using surface
electromyographic signals (sEMG). The sEMG signals are collected
from three different muscle groups of the upper forearm: palmaris longus
muscle, extensor digitorum communis muscle, and extensor carpi radialis
longus muscle. The objective of this research is to develop a prototype
of a robotic prosthesis for people with hand amputation, controlled by
an electromyographic interface based on computational intelligence. This
thesis covers the following topics: positioning of electrodes to capture the
sEMG signals, design of an electromyography muscle interface, preprocessing
method, use of techniques of computational intelligence for the interpretation
of the sEMG signals, design of the robotic hand, and method
used to control the positions of the fingers and of the hand grip force.
Here, the wavelet transform is used as a feature extraction method in electromyographic
signals, and a multi-layer neural network as a pattern classification
method. The proposed model obtained satisfactory results, recognizing
90.5 per cent of the positions for 6 different hand patterns, 94.3 per cent for 5, and
96.25 per cent for 4 positions.
|
|||||||||||||
|