Título: | A MACHINE LEARNING APPROACH FOR PORTUGUESE TEXT CHUNKING | ||||||||||||||||||||||||||||||||||||||||
Autor: |
GUILHERME CARLOS DE NAPOLI FERREIRA |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
RUY LUIZ MILIDIU - Orientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 10/FEV/2017 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29117&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29117&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.29117 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
Text chunking is a very relevant Natural Language Processing task, and
consists in dividing a sentence into disjoint sequences of syntactically correlated
words. One of the factors that highly contribute to its importance is that its
results are used as a significant input to more complex linguistic problems.
Among those problems we have full parsing, clause identification, dependency
parsing, semantic role labeling and machine translation. In particular, Machine
Learning approaches to these tasks greatly benefit from the use of a chunk
feature. A respectable number of effective chunk extraction strategies for the
English language has been presented during the last few years. However, as
far as we know, no comprehensive study has been done on text chunking for
Portuguese, showing its benefits. The scope of this work is the Portuguese
language, and its objective is twofold. First, we analyze the impact of different
chunk definitions, using a heuristic to generate chunks that relies on previous
full parsing annotation. Then, we propose Machine Learning models for chunk
extraction based on the Entropy Guided Transformation Learning technique.
We employ the Bosque corpus, from the Floresta Sintá(c)tica project, for our
experiments. Using golden values determined by our heuristic, a chunk feature
improves the F beta equal 1 score of a clause identification system for Portuguese by 6.85
and the accuracy of a dependency parsing system by 1.54. Moreover, our best
chunk extractor achieves a F beta equal 1 of 87.95 when automatic part-of-speech tags
are applied. The empirical findings indicate that, indeed, chunk information
derived by our heuristic is relevant to more elaborate tasks targeted on
Portuguese. Furthermore, the effectiveness of our extractors is comparable to
the state-of-the-art similars for English, taking into account that our proposed
models are reasonably simple.
|
|||||||||||||||||||||||||||||||||||||||||
|