Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A COLLABORATIVE ENVIRONMENT FOR OFFSHORE ENGINEERING SIMULATIONS BASED ON VISUALIZATION AND WORKFLOW
Autor: ISMAEL HUMBERTO FERREIRA DOS SANTOS
Colaborador(es): MARCELO GATTASS - Orientador
ALBERTO BARBOSA RAPOSO - Orientador
Catalogação: 07/FEV/2017 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29063&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=29063&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.29063
Resumo:
Deep-water production systems, including floating production units (platforms or ships) and all the equipments playing a part in the production process, are currently designed by means of complex computational modeling systems. Those systems involve the areas of structural calculus, meteo-oceanography (currents, waves and wind forces), hydrodynamics, risers (rigid or flexible steel pipes for carrying oil from the well in subsurface up to the production unit), mooring systems, submarine equipment, seabed foundations and Geologic/Geotechnical risk assessment. The project of a new production unit is a lengthy and expensive process, that can last many years and consume hundreds of million of dollars, depending on the complexity of the unit and how mature is the technology developed to make the project technically and economically feasible. Projects are conducted by diverse specialists, sometimes geographically distributed, yielding independent but highly interrelated artifacts and results. The need for collaboration is an inherent characteristic of deep-water floating production unit projects. The possibility to share information among users, control the execution of different modeling tools, visualize and manipulate virtual 3D models in immersive Virtual Reality (VR) environments is pushing the limits of teamwork activities in oil and gas industry especially in Offshore Engineering. The objective of this thesis is to establish the fundamental principles and address the main issues in the development of a Collaborative Environment for Engineering, named CEE (Collaborative Engineering Environment), in order to allow the collaborative visualization and interpretation of simulation results produced in engineering projects, which in general also involve different specialties. Due to the multidisciplinary characteristic of those projects, collaborative visualization becomes a key component during the life cycle of engineering projects, especially those in Offshore Engineering, used in this work as case of study. We propose an integrated collaborative environment to be used by project engineers teams during the execution and control of complex engineering projects, as is the case of the projects of deep-water floating production units. The system requirements were carefully compiled aiming to enable an effective collaboration among the participants, creating a suitable environment for discussing, validating, interpreting and documenting the results of the simulations executed during the different phases of an engineering project. To further improve the interpretation capacity and a better comprehension of results the support for immersive 3D visualization is also available in the visualization tool, especially tailored for the Offshore Engineering domain. In order to meet these goals, we devise a Service- Oriented Architecture (SOA) for CEE. This architecture is composed of the integration of different technologies of Computer Supported Collaborative Work (CSCW), Virtual Reality (VR) and Grid Computing (GC). We use a Scientific Workflow Management System (ScWfMS), based on BPEL (Business Process Execution Language), a Grid-enabled software infrastructure for executing engineering simulations, and a Video Conferencing system (VCS) to furnish audio and video collaboration. For visualizing the results, a VR visualization tool, specialized for Offshore Engineering, ENVIRON, has also been developed in conjunction with the PUC-Rio/TecGraf team.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, ABSTRACT, RESUMO, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES AND APPENDICES PDF