Título: | A SYSTEM FOR STOCK MARKET FORECASTING AND SIMULATION | |||||||
Autor: |
PAULO DE TARSO GOMIDE CASTRO SILVA |
|||||||
Colaborador(es): |
RUY LUIZ MILIDIU - Orientador |
|||||||
Catalogação: | 02/FEV/2017 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28979&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28979&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28979 | |||||||
Resumo: | ||||||||
The interest of both investors and researchers in stock market behavior forecasting has increased throughout the recent years. Despite the wide number of publications examining this problem, accurately predicting future stock trends and developing business strategies capable of turning good predictions into profits are
still great challenges. This is partly due to the nonlinearity and noise inherent to the stock market data source, and partly because benchmarking systems to assess the forecasting quality are not publicly available. Here, we perform time series forecasting aiming to guide the investor both into Pairs Trading and buy and sell
operations. Furthermore, we explore two different forecasting periodicities. First, an interday forecast, which considers only daily data and whose goal is predict values referring to the current day. And second, the intraday approach, which aims to predict values referring to each trading hour of the current day and also
takes advantage of the intraday data already known at prediction time. In both forecasting schemes, we use three regression tools as predictor algorithms, which are: Partial Least Squares Regression, Support Vector Regression and Artificial Neural Networks. We also propose a trading system as a better way to assess
the forecasting quality. In the experiments, we examine assets of the most traded companies in the BM and FBOVESPA Stock Exchange, the world s third largest and official Brazilian Stock Exchange. The results for the three predictors are presented and compared to four benchmarks, as well as to the optimal solution.
The difference in the forecasting quality, when considering either the forecasting error metrics or the trading system metrics, is remarkable. If we consider just the mean absolute percentage error, the proposed predictors do not show a significant superiority. Nevertheless, when considering the trading system evaluation, it shows really outstanding results. The yield in some cases amounts to an annual return on investment of more than 300 per cent.
|
||||||||