Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SOME RESULTS IN A PROOF-THEORY BASED ON GRAPHS
Autor: MARCELA QUISPE CRUZ
Colaborador(es): EDWARD HERMANN HAEUSLER - Orientador
LEW GORDEEV - Coorientador
Catalogação: 19/JAN/2017 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28745&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28745&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.28745
Resumo:
Traditional proof theory of Propositional Logic deals with proofs which size can be huge. Proof theoretical studies discovered exponential gaps between normal or cut free proofs and their respective non-normal proofs. Thus, the use of proof-graphs, instead of trees or lists, for representing proofs is getting popular among proof-theoreticians. Proof-graphs serve as a way to provide a better symmetry to the semantics of proofs and a way to study complexity of propositional proofs and to provide more efficient theorem provers, concerning size of propositional proofs. The aim of this work is to reduce the weight/size of deductions. We present formalisms of proof-graphs that are intended to capture the logical structure of a deduction and a way to facilitate the visualization. The advantage of these formalisms is that formulas and subdeductions in Natural Deduction, preserved in the graph structure, can be shared deleting unnecessary sub-deductions resulting in the reduced proof. In this work, we give a precise definition of proof-graphs for purely implicational logic, then we extend this result to full propositional logic and show how to reduce (eliminating maximal formulas) these representations such that a normalization theorem can be proved by counting the number of maximal formulas in the original derivation. The strong normalization will be a direct consequence of such normalization, since that any reduction decreases the corresponding measures of derivation complexity. Continuing with our aim of studying the complexity of proofs, the current approach also give graph representations for first order logic, deep inference and bi-intuitionistic logic.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, ABSTRACT, RESUMO, SUMMARY AND LIST OF FIGURES PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF