Título: | MORPHOSYNTACTIC ANNOTATION BASED ON MORPHOLOGICAL CONTEXT | ||||||||||||
Autor: |
EDUARDO DE JESUS COELHO REIS |
||||||||||||
Colaborador(es): |
RUY LUIZ MILIDIU - Orientador |
||||||||||||
Catalogação: | 20/DEZ/2016 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28461&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28461&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28461 | ||||||||||||
Resumo: | |||||||||||||
Part-of-speech tagging is one of the primary stages in natural language
processing, providing useful features for performing higher complexity
tasks. Word level representations have been largely adopted, either through
a conventional sparse codification, such as bag-of-words, or through a distributed
representation, like the sophisticated word embedded models used
to describe syntactic and semantic information. A central issue on these
codifications is the lack of morphological aspects. In addition, recent taggers
present per-token accuracies around 97 percent. However, when using a persentence
metric, the good taggers show modest accuracies, scoring around
55-57 percent. In this work, we demonstrate how to use n-grams to automatically
derive morphological sparse features for text processing. This representation
allows neural networks to perform POS tagging from a character-level input.
Additionally, we introduce a regularization strategy capable of selecting
specific features for each layer unit. As a result, regarding n-grams selection,
using the embedded regularization in our models produces two variants. The
first one shares globally selected features among all layer units, whereas the
second operates individual selections for each layer unit, so that each unit
is sensible only to the n-grams that better stimulate it. Using the proposed
approach, we generate a high number of features which represent relevant
morphosyntactic affection based on a character-level input. Our POS tagger
achieves the accuracy of 96.67 percent in the Mac-Morpho corpus for Portuguese.
|
|||||||||||||
|