Título: | INVESTIGATION OF HYDRAULIC FRACTURING THROUGH ANALYTICAL AND NUMERICAL MODELS | ||||||||||||
Autor: |
RENATO GUTIÉRREZ ESCOBAR |
||||||||||||
Colaborador(es): |
CELSO ROMANEL - Orientador DEANE DE MESQUITA ROEHL - Coorientador |
||||||||||||
Catalogação: | 22/NOV/2016 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28072&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28072&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28072 | ||||||||||||
Resumo: | |||||||||||||
The hydraulic fracturing process has been widely used to improve oil and gas recovery in the petroleum industry. During the fluid injection, the desired section of rock formation is fractured in order to increase the permeability of the medium that can facilitate the flow of oil to a producing well. However, this process can lead to potential environmental risks such as seismic activity, unwanted fractures in cap layers by water injection, water contamination and gas leakage making primordial to develop a rigorous study in order to reduce this environmental risks associated to hydraulic fracturing. One of the studies developed to design the hydraulic fracturing is computational simulation to determine the fluid volume and hydraulic horsepower required in order to produce the wanted fracture geometry (length, opening and height). The numerical modelling of fracturing process by using fully coupled cohesive element hydraulic can be carried out considering either a steady state or a transient analysis, which modify the fracture geometry and injection pressure. In this work, the KGD model is simulated in transient and steady analysis for two cases: (1) injection in a single layer formation and (2) injection in tri-layered formation with stress and porepressure contrast between them. The numerical simulation of a hydraulic fracturing is carried out using the finite element method with the zone cohesive model in Abaqus whose results are compared with analytical solutions of toughness-dominated propagation regime for the one layer formation model and Simonson and Fung analytical solutions for tri-layered formations model.
|
|||||||||||||
|