Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A METACLASSIFIER FOR FINDING THE K-CLASSES MOST RELEVANTS
Autor: DANIEL DA ROSA MARQUES
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 19/OUT/2016 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27696&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27696&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.27696
Resumo:
Consider a network with k nodes that may fail along its operation. Furthermore assume that it is impossible to check all nodes whenever a failure occurs. Motivated by this scenario, we propose a method that uses supervised learning to generate rankings of the most likely nodes responsible for the failure. The proposed method is a meta-classifier that is able to use any kind of classifier internally, where the model generated by the meta-classifier is a composition of those generated by the internal classifiers. Each internal model is trained with a subset of the data created from the elimination of instances whose classes were already put in the ranking. Metrics derived from Accuracy, Precision and Recall were proposed and used to evaluate this method. Using a public data set, we verified that the training and classification times of the meta-classifier were greater than those of a simple classifier. However it reaches better results in some cases, as with the decision trees, that exceeds the benchmark accuracy for a margin greater than 5 percent.
Descrição: Arquivo:   
COMPLETE PDF