Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: BEHAVIOR OF POLYETHYLENE TEREPHTHALATE (PET) FIBERS REINFORCED SAND
Autor: PHILLIPE CAMPELLO SENEZ
Colaborador(es): MICHELE DAL TOE CASAGRANDE - Orientador
Catalogação: 17/OUT/2016 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27669&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27669&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.27669
Resumo:
The main objective of this study was to demonstrate that fibers derived from the recycling of PET (Polyethylene Terephthalate) bottle, 100 percent made from the residue by the textile industry, can be a good alternative if used as reinforcement of soil, when submitted to different load levels. Looking for a better applicability for this material, were executed drained triaxial compression tests in laboratory, as well as plate load tests, also with slope simulation in a reduced physic model, to evaluate the mechanical behavior of a sand and a composite sand-PET fibers. For the drained triaxial tests, were used PET fibers with two different titles (corresponding to the fiber diameters) and lenghts (1,4 dtex com 38 mm e 3,3 dtex com 56 mm), distributed randomly in the soil mass, where was used a fiber contente of 0,5 percent by relation to the soil s dry weight, moisture content of 10 percent and relative density of 50 percent. The results showed that the pure sand behavior was influenced by the addition of PET fibers, improving the strenght parameters as the cohesion intercept and the friction angle, defined by the Mohr-Coulomb criteria. The composite reinforced with PET fibers with minor title and lenght presented a better improvement in the shear strenght, but both composites, compared to the non reinforced soil, showed greater resistence. For the plate load tests and for the slope simulation, both performed in a reduced physic model, it was used the fiber with minor title and lenght as reinforcement element. The addiction of PET fibers improve the load-settlement behavior of the sand, where the reinforced composite shows a greater bearing capacity, a reduction of the settlements and a change in the propagation and formation of fissures around the plate. In the slope simulation, the addiction of PET fibers promove a complete alteration in the rupture mechanism that occurred in the composite, when compared to the rupture of the pure sand. It is highlighted the positive use of PET fibers for application as soil reinforcement in geotechnical works (as an example, in landfill layers, embankment on soft soil, slope reinforcement, base of shallow foundations and erosion control), eliminating current problems of waste disposal, giving a noble end to this material, with environmental, social and economical benefits.
Descrição: Arquivo:   
COMPLETE PDF