Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: GEOMETRIC MODELIG FOR FINITE ELEMENTS WITH MULTI-REGIONS AND PARAMETRIC SURFACES
Autor: WILLIAM WAGNER MATOS LIRA
Colaborador(es): LUIZ FERNANDO CAMPOS RAMOS MARTHA - Orientador
Catalogação: 11/JUL/2002 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2755&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2755&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.2755
Resumo:
This work presents a computational environment for geometric modeling applied to finite-element analysis using multi-regions and parametric surfaces represented as NURBS. The main goal is to generate 3D models to be used in numerical simulations based on the Finite-Element Method (FEM). For this purpose, the adopted methodology consists of combining some aspects of geometric modeling, such as automatic region detection and surface intersection, with finite-element mesh generation. In the context of Object-Oriented Programming, a new class organization for the geometric modeler used in this work, called MG (Mesh Generation), is presented. This class organization allows the implementation of the proposed environment, keeping the user interface as simple and efficient as in the original version of the MG modeler. The proposed class organization also provides support for the generation of models used in finite-element analysis. While the finite-element meshes required for the numerical simulations are generated by specific algorithms implemented in MG, the attributes are managed by a system called ESAM (Extensible System Attributes Management), which also is incorporated into MG. This system allows the customization of simulation attributes in the MG modeler for use in different types of Engineering problems. The data structure used in this environment is represented by a hybrid approach based on the combination of a CGC (Complete Geometric Complex) representation and the MG`s data structure, which has been extended for this purpose. Moreover, the computation of surface intersections is accomplished by using an algorithm implemented in the MG, while the CGC representation is responsible for multi-region recognition. The surface-intersection algorithm has been modified in order to handle special cases that have not been treated in the original version.
Descrição: Arquivo:   
PDF      
CHAPTER 2 PDF      
PART I, CHAPTER 2 PDF      
PDF      
CHAPTER 4 PDF      
CHAPTER 5 PDF      
PDF      
PDF      
PDF      
PDF      
CHAPTER 6 AND REFERENCES PDF