Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ON THE MIN DISTANCE SUPERSET PROBLEM
Autor: LEONARDO LOBO DA CUNHA DA FONTOURA
Colaborador(es): THIBAUT VICTOR GASTON VIDAL - Orientador
MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Coorientador
Catalogação: 09/JUN/2016 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26566&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26566&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26566
Resumo:
The Partial Digest Problem, also known as the Turnpike Problem, consists of building a set of points on the real line given their unlabeled pairwise distances. A variant of this problem, named Min Distance Superset Problem, deals with incomplete input in which distances may be missing. The goal is to find a minimal set of points on the real line such that the multiset of their pairwise distances is a superset of the input. The main contributions of this work are two different mathematical programming formulations for the Min Distance Superset Problem: a quadratic programming formulation and an integer programming formulation.We show how to apply direct computation methods for variable bounds on top of a Lagrangian relaxation of the quadratic formulation. We also introduce two approaches to solve the integer programming formulation, both based on binary searches on the cardinality of an optimal solution. One is based on a subset of decision variables, in an attempt to deal with a simpler feasibility problem, and the other is based on distributing available distances between possible points.
Descrição: Arquivo:   
COMPLETE PDF