Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: TRANSITIVE FINSLER GEODESIC OWS AND APPLICATIONS
Autor: ALESSANDRO GAIO CHIMENTON
Colaborador(es): RAFAEL OSWALDO RUGGIERO RODRIGUEZ - Orientador
Catalogação: 02/JUN/2016 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26523&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26523&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26523
Resumo:
In this work we prove that the geodesic flow of a compact, n-dimensional Finsler manifold without conjugate points and which is an uniform visibility manifold is transitive. For this, we introduce Finsler versions of Gromov s hyperbolicity and Eberlein s visibility concepts and study its consequences. As an application of the transitivity, we prove that compact, k-basic Finsler surfaces without conjugate points, with genus greater than one and with continuous Green bundles are Riemannian.
Descrição: Arquivo:   
COMPLETE PDF