Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: AN APPROACH FOR DEALING WITH INCONSISTENCIES IN DATA MASHUPS
Autor: EVELINE RUSSO SACRAMENTO FERREIRA
Colaborador(es): MARCO ANTONIO CASANOVA - Orientador
Catalogação: 24/MAI/2016 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26459&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26459&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26459
Resumo:
With the amount of data available on the Web, consumers can mashup and quickly integrate data from different sources belonging to the same application domain. However, data mashups constructed from independent and heterogeneous data sources may contain inconsistencies and, therefore, puzzle the user when observing the data. This thesis addresses the problem of creating a consistent data mashup from mutually inconsistent data sources. Specifically, it deals with the problem of testing, when data to be combined is inconsistent with respect to a predefined set of constraints. The main contributions of this thesis are: (1) the formalization of the notion of consistent data mashups by treating the data returned from the data sources as a default theory and considering a consistent data mashup as an extension of this theory; (2) a model checker for a family of Description Logics, which analyzes and separates consistent from inconsistent data and also tests the consistency and completeness of the obtained data mashups; (3) a heuristic procedure for computing such consistent data mashups.
Descrição: Arquivo:   
COMPLETE PDF