Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY
Autor: PERCY ALEXANDER CACERES TINTAYA
Colaborador(es): HIROSHI NUNOKAWA - Orientador
STEFAN ZOHREN - Coorientador
Catalogação: 19/MAI/2016 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26432&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26432&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26432
Resumo:
We review the basic notions of the Random Matrix Theory and in particular the Gaussian Unitary Ensemble. In what follows we describe the Dyson gas in equilibrium and nonequilibrium that allows one to interpret the statistical information of the eigenvalues of random matrices. Furthermore we show alternative descriptions of this statistical information. In the following we discuss different aspects of orthogonal polynomials. One of these caracterizations is given by a Riemann Hilbert problem. Riemann Hilbert problem techniques are an efficient and powerfull tool for Random Matrix Theory which we discuss in more detail. In the final part we use the steepest descent method in the asymptotic analysis of orthogonal polynomials.
Descrição: Arquivo:   
COMPLETE PDF