Título: | DOMINO TILINGS OF THE TORUS | ||||||||||||
Autor: |
FILLIPO DE SOUZA LIMA IMPELLIZIERI |
||||||||||||
Colaborador(es): |
NICOLAU CORCAO SALDANHA - Orientador |
||||||||||||
Catalogação: | 10/MAI/2016 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26336&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26336&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.26336 | ||||||||||||
Resumo: | |||||||||||||
We consider the problem of counting and classifying domino tilings of
a quadriculated torus. The counting problem for rectangles was studied by
Kasteleyn and we use many of his ideas. Domino tilings of planar regions
can be represented by height functions; for a torus given by a lattice L,
these functions exhibit arithmetic L-quasiperiodicity. The additive constants
determine the flux of the tiling, which can be interpreted as a vector in the
dual lattice (2L) asterisk. We give a characterization of the actual
flux values, and of how corresponding tilings behave. We also consider domino tilings of the
infinite square lattice; tilings of tori can be seen as a particular case of those.
We describe the construction and usage of Kasteleyn matrices in the counting
problem, and how they can be applied to count tilings with prescribed
flux values. Finally, we study the limit distribution of the number of tilings with a
given flux value as a uniform scaling dilates the lattice L.
|
|||||||||||||
|