Título: | NANOSCALE MECHANICAL DEFORMATION MECHANISMS OF GALLIUM NITRIDE | |||||||
Autor: |
PAULA GALVAO CALDAS |
|||||||
Colaborador(es): |
RODRIGO PRIOLI MENEZES - Orientador |
|||||||
Catalogação: | 30/OUT/2015 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25364&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25364&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.25364 | |||||||
Resumo: | ||||||||
In this work, the mechanical deformation of GaN films was studied by
nanoindentation. A nanoindenter was used to induce the nucleation of
mechanical defects on the samples surfaces in a controlled manner. The
morphology of the indentations and the microstructure of the defects were
studied using atomic force microscopy and transmission electron
microscopy. The results showed that in the early stages of deformation,
the nanoindentation process promotes slip at the atomic scale of the
pyramidal planes of the crystal that can be reversed if the load is removed.
If load is further increased, locking of these atomic plains occur leading to
a hardened crystal region. It acts as an extension of the tip of the indenter
redistributing the applied stress. At a critical stress, a major pop-in event
occurs with the slip of the 1101, 1122 and 0001 plains leading then to
irreversible plastic deformation. The influence of doping on the mechanical
deformation has been studied and the results showed that it is more
difficult to produce mechanical deformation in GaN films doped with Si and
Mg doped than in undoped films. The self-recovery that occurs after
removal of the tip was investigated using ZnO crystals with different
orientations. The mechanism of thermal activation of dislocation loops was
studied by observing the influence of temperature on the self-recovery
process of the crystals. Cathodoluminescence measures were used to
identify the resulting stress distributions associated with permanent plastic
deformation showing that this induces tensile regions along the a 1120
directions in doped and undoped GaN films.
|
||||||||