Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: THE HIBRID BOUNDARY ELEMENT METHOD APPLIED TO TRANSIENT PROBLEMS
Autor: DENILSON RICARDO DE LUCENA NUNES
Colaborador(es): NEY AUGUSTO DUMONT - Orientador
Catalogação: 27/MAR/2002 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2494&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2494&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.2494
Resumo:
More than three decades ago, Przemieniecki introduced a formulation for the free vibration analysis of bar and beam elements based on a power series of frequencies. Recently, this formulation was generalized for the analysis of the dynamic response of elastic systems submitted to arbitrary nodal loads as well as initial displacements. Based on the mode-superposition method, a set of coupled, higher-order differential equations of motion is transformed into a set of uncoupled second order differential equations, which may be integrated by means of standard procedures. Motivation for this theoretical achievement is the hybrid boundary element method, which has been developed for time-dependent as well as frequency-dependent problems. This formulation, as a generalization of Pian`s previous achievements for finite elements, yields a stiffness matrix for which only boundary integrals are required, for arbitrary domain shapes and any number of degrees of freedom. The use of higher-order frequency terms drastically improves numerical accuracy. The introduced modal assessment of the dynamic problem is applicable to any kind of finite element for which a generalized stiffness matrix is available. The present work is an attempt of consolidating this boundary- only theoretical formulation, in which a series of particular cases are conceptually outlined and numerically assessed: Constrained and unconstrained structures; initial displacements and velocities as nodal values as well as prescribed domain fields (including rigid body movement); forced time-dependent displacements; time-dependent body forces; evaluation of results at internal points. Several academic examples for 2D problems of potential illustrate the formulation.
Descrição: Arquivo:   
PDF      
CHAPTER 3 PDF      
PDF