Título: | THE HIBRID BOUNDARY ELEMENT METHOD APPLIED TO TRANSIENT PROBLEMS | ||||||||||||||||||||
Autor: |
DENILSON RICARDO DE LUCENA NUNES |
||||||||||||||||||||
Colaborador(es): |
NEY AUGUSTO DUMONT - Orientador |
||||||||||||||||||||
Catalogação: | 27/MAR/2002 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2494&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2494&idi=2 |
||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.2494 | ||||||||||||||||||||
Resumo: | |||||||||||||||||||||
More than three decades ago, Przemieniecki introduced a
formulation for the free vibration analysis of bar and beam
elements based on a power series of frequencies. Recently,
this formulation was generalized for the analysis of the
dynamic response of elastic systems submitted to arbitrary
nodal loads as well as initial displacements. Based on the
mode-superposition method, a set of coupled, higher-order
differential equations of motion is transformed into a set
of uncoupled second order differential equations, which may
be integrated by means of standard procedures. Motivation
for this theoretical achievement is the hybrid boundary
element method, which has been developed for time-dependent
as well as frequency-dependent problems. This formulation,
as a generalization of Pian`s previous achievements for
finite elements, yields a stiffness matrix for which only
boundary integrals are required, for arbitrary domain
shapes and any number of degrees of freedom. The use of
higher-order frequency terms drastically improves numerical
accuracy. The introduced modal assessment of the dynamic
problem is applicable to any kind of finite element for
which a generalized stiffness matrix is available. The
present work is an attempt of consolidating this boundary-
only theoretical formulation, in which a series of
particular cases are conceptually outlined and numerically
assessed: Constrained and unconstrained structures; initial
displacements and velocities as nodal values as well as
prescribed domain fields (including rigid body movement);
forced time-dependent displacements; time-dependent body
forces; evaluation of results at internal points. Several
academic examples for 2D problems of potential illustrate
the formulation.
|
|||||||||||||||||||||
|