Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DROPLET BREAK-UP IN A FLOW THROUGH AN ORIFICE
Autor: SERGIO PAULO GOMES PINHO
Colaborador(es): MARCIO DA SILVEIRA CARVALHO - Orientador
Catalogação: 13/MAR/2015 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24278&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24278&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.24278
Resumo:
In the oil industry, during an oilfield development, the sea water injection is largely used to maintain the reservoir pressure. As a result of this injection, there is the increase of the water fraction in the produced fluid, forming an emulsion with a determined droplet size distribution. In the production system, this mixture flows under different conditions of pressure and temperature that impact the emulsion droplet size distribution. The most meaningful changes of these conditions occur in the chokes that are installed at the process plant arrival. The knowledge of the droplet size distribution is important, because it impacts the sizing of the separators that will be installed at the platform, in an offshore scenario. The parameter that was considered as the most appropriate to describe the droplet break-up process was the energy dissipation rate. During the experiments performed to evaluate the droplet break-up in the chokes, it was observed that this parameter had some limitations and a new adjustment was proposed to fit with the measured values. In the tests, two oils with different viscosities were used while varying orifices characteristics to obtain the needed data to elaborate a new approach. Thus, it was found that the measured pressure drop through the restriction presented the best relation with the droplets diameters measured downstream the orifice. After this, the effect of the oil viscosity was also added to the model so to create a correlation valid for both tested oils. In this way, the break-up model proposed would be more complete and useful for different conditions.
Descrição: Arquivo:   
COMPLETE PDF