Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APPLICATION OF CLUSTERING METHODS IN A STUDY ABOUT THE BRAZILIAN STOCK MARKET
Autor: RODRIGO ARRUDA TORRES
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
Catalogação: 02/MAI/2014 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22901&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22901&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.22901
Resumo:
Evidence indicates that shares of companies belonging to the same economic sector have similar returns over time, since they would be exposed to similar economic-financial and technical-operational variables. Portfolio managers, in general, use this evidence in their daily valuations in order to find the best investment alternatives. However, in most cases, there isn`t a theoretical and mathematical background proving this relationship between stocks exists. The objective of this dissertation is to determine whether, for a group of stocks classified as among the most important of the Brazilian stock market, the daily closing prices that behave similarly correspond to companies in the same economic sector. To test this hypothesis, various clustering methods were evaluated and applied to the dissimilarity matrix calculated for the analyzed data, which is determined using different non-parametric techniques for calculating the dependency between data. The models were compared and the best selected by applying clustering validation index.
Descrição: Arquivo:   
COMPLETE PDF