Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: EXPERIMENTAL STUDY OF TURBULENT NON-PREMIXED FLAMES BY SIMULTANEOUSLY APPLYING PLIF AND PIV LASER DIAGNOSTIC TECHNIQUES
Autor: NATTAN ROBERTO CAETANO
Colaborador(es): LUIS FERNANDO FIGUEIRA DA SILVA - Orientador
Catalogação: 07/ABR/2014 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22809&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22809&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.22809
Resumo:
Turbulent non-premixed flames stabilized on a bluff-body burner are studied. This burner is representative of industrial furnace applications, provides ample optical access, allowing for the required conditions to perform a detailed combustion study in turbulent flowfield. Measurements of the fluorescence luminosity emitted by OH radical and the velocity field are achieved applying, Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV) techniques, respectively. An uncertainty analysis is presented considering specifically the reactive case, which yields experimental uncertainties associated to the PIV and PLIF techniques of 6 per cent and 25 per cent, respectively. The study of two chemically inert cases, the first dominated by jet and the second dominated by wake, supports the uncertainty calculations and the flowfield structure analysis. Subsequently, several combustion regimes using Natural Gas and air are studied. The flame front characteristics and flowfield structures are analyzed using the OH fluorescence distribution and measured velocity field. The mean images allow the determination of the flame stabilization position in the flowfield, and also indicate the stoichiometry surface and the mean lift-off height. The RMS values of fluorescence signal quantify the flame front fluctuation, both in position and intensity. The measured components of the Reynolds stress tensor are analyzed with respect to the Boussinesq hypothesis, i.e., the relation between mean strain rate and Reynolds stress tensor, in order to examine the tensor deviation from the isotropy. The Boussinesq hypothesis seems to be valid in cases where the jet is dominant and not valid when jet bursts in the wake region. The presented results are the first step towards the construction of a database to validate computational models aimed at optimizing the combustion process and designing more efficient burners.
Descrição: Arquivo:   
COMPLETE PDF