Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SOLVING LARGE SYSTEMS OF LINEAR EQUATIONS ON MULTI-GPU CLUSTERS USING THE CONJUGATE GRADIENT METHOD IN OPENCLTM
Autor: ANDRE LUIS CAVALCANTI BUENO
Colaborador(es): NOEMI DE LA ROCQUE RODRIGUEZ - Orientador
ELISA DOMINGUEZ SOTELINO - Coorientador
Catalogação: 27/SET/2013 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22099&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22099&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.22099
Resumo:
The process of modeling problems in the engineering fields tends to produce substantiously large systems of sparse linear equations. Extensive research has been done to devise methods to solve these systems. This thesis explores the computational potential of multiple GPUs, through the use of the OpenCL tecnology, aiming to tackle the solution of large systems of sparse linear equations. In the proposed methodology, the conjugate gradient method is subdivided into kernels, which are delegated to multiple GPUs. In order to achieve an efficient method, it was necessary to understand how the GPUs’ architecture communicates with OpenCL.
Descrição: Arquivo:   
COMPLETE PDF