Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT OF A DIGITAL MICROSCOPY SYSTEM FOR AUTOMATIC CLASSIFICATION OF HEMATITE TYPES IN IRON ORE
Autor: JULIO CESAR ALVAREZ IGLESIAS
Colaborador(es): SIDNEI PACIORNIK - Orientador
OTAVIO DA FONSECA MARTINS GOMES - Coorientador
Catalogação: 30/JUL/2013 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21815&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21815&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.21815
Resumo:
Iron ore is a polycrytalline material created by complex natural process during geological period, wich give rise to intrinsic characteristics and varied industrial behavior. The vast majority of the Brazilian iron ores belong essentially to the hematitic type. Hematite can be classified as lobular, lamelar, granular micro-crystalline or martite. In the mineral industry, the characterion of iron ore and its agglomerates is traditionally developed by human operatorsform the observation of samples under the optical microscop, wich may suffer large variations. Thus, it is important to develop a procedure that allows the discrimation of the different hematite types and the measurement of characteristics suchs crystal size. The present thesis proposes a system for the automatic classification of hematite textural types, based of digital on processing and analysis of optical microscopy images, in bright field, linear and circular polarized light. Routines were developed for the acquisition, registration, recognition and morphological analysis of hematite crytals. The automatic segmentation of hematite crystals was based on calculating the spectral distance, in order to control the region expansion form the seeds. The results regarding the identification of the obtained cystals were very promising. Size and shape attributes were obtained and used as a training set for supervised classifiers, leading to the recognition of granular, lamelar and lobular hematite classes. Global sucess rates close to 98 percent were obtained concerning self-validation as well crossed validation.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES, APPENDICE PDF